BIM Consulting and the digital transformation of construction companies

bim consulting services and digital transformation

In the construction industry, companies face various challenges, including adapting to new technologies to remain competitive. Our BIM consulting service is presented as a fundamental tool to promote digital transformation in the construction sector.

Acero Estudio, through its BIM consulting service, based on the BIM (Building Information Modeling) methodology, offers construction companies the opportunity to optimize their design, construction and project management processes through implementation and training in the use of intelligent digital models. The result is complete and detailed models that contain detailed information about every aspect of a project, from geometry and structure to materials, costs, maintenance projections, strength calculations, etc.

All this wide range of information is established with the aim of achieving more accurate planning and informed decision making.

As is known, one of the main advantages of the BIM methodology is its collaborative nature, but achieving it is not easy, especially because there is a lot of aversion to change due to fear, lack of knowledge or trust in inherited methods. Acero Estudio and its BIM consultants have the knowledge, the experience and that extra pedagogy that helps us to transmit the right ideas to your team in such a way that they can feed and help to gradually and efficiently build the centralized digital model where everyone actors access it in real time with minimal errors and risks in the construction process.

Helps in efficiency and meeting deadlines

Companies worry about their efficiency and the construction sector is no exception. In this aspect, it is worth noting that the BIM methodology speeds up the coordination processes between areas, improves communication, making it unequivocal in the face of a model that has the precise data and with this it is possible not only to have a nice digital picture of the work but also a great efficiency in each of the processes, planning, purchasing logistics, avoiding unnecessary expenses and delays.

It is worth noting that not all construction companies still use the BIM methodology, therefore encouraging this type of development within your company will not only help improve the efficiency of your processes but will also help you differentiate yourself from the competition, attracting more clients. large and serious companies looking for best practices.

Contact Acero Estudio today and let’s talk about how the BIM methodology can help you improve your processes. We are at your service.

Precision surveying for communications projects

estudios-topograficos-para-telecomunicaciones

One of the most important uses of Acero Estudio’s topography services consists of the support and generation of topographic studies for the telecommunications industry. In this sense, it is worth noting that the strategic and correct location of the antennas is crucial to guarantee effective coverage.

Thanks to the topographic surveys provided by Acero Estudio, you can know not only the topography of the terrain, but also various obstacles that can interfere with the signals and that are not visible to the naked eye. With this precise information, we enable telecommunications engineers to choose optimal locations for installing communications infrastructure.

Precision topography allows us to offer a highly accurate service by recording topographic, geodetic and geometric details. In communications projects, such as the installation of telecommunications towers, antennas, fiber optic cables or mobile network deployment, this advanced type of precision surveying is essential for these reasons:

Allows us to identify potential obstacles to transmission signals
It allows us to provide essential information for planning underground or overhead cables efficiently and safely.
It provides us with adequate information to minimize the environmental impacts of infrastructure and achieve the requested regulatory compliance.

To achieve this topography we use various technologies such as:

  • Total stations that are advanced instruments for detailed topographic surveys
  • High precision GPS
  • Terrestrial laser scanner
  • Topographic drones

Contact Acero Estudio, a company specialized in Topography in Europe and Latin America, do not leave connectivity projects to chance; trust the best.

How photogrammetry with drones enhances geological exploration in the mining sector

As you already know, Acero Estudio specializes in providing drone photogrammetry service. This technique that is normally used to measure, record and generate models of a surface becomes powerful when drones equipped with high-resolution cameras are used that can capture detailed images of inaccessible mining areas, providing a complete view of the terrain.

Exploration has taken a big step with the help of drones that allow us to reach areas previously inaccessible to ordinary geologists. Today, with powerful drones, equipped with long-lasting batteries and very high-resolution cameras, it is possible to achieve greater results in the mining prospection of a land.

Security Advantages

One of the limitations that geologists always had was access to inaccessible areas such as steep mountains or unstable terrain. Thanks to drones it is now possible to fly over dangerous and difficult-to-access terrain, obtain data from previously unreachable places.

Greater efficiency

Thanks to the ability to cover larger areas, aerial photogrammetry with drones is faster and less expensive compared to traditional aerial mapping methods. It is worth noting that there is software that allows evaluating the characteristics of the terrain to indicate the areas with the best perspectives.

Around the world, the mining industry is adopting drones for various applications such as:

  • Mapping of mineral deposits
  • Environmental monitoring
  • Mine Planning and Development

Contact us and we will help you integrate drone photogrammetry into your land analysis tasks, which will allow you to better understand your lands under exploration.

Aerial photogrammetry and its advantages to create cadastral information

plano catastral generado mediante fotogrametria con drones

The cadastral information of a territory contains a series of data about the properties, that is: physical characteristics such as areas and delimitations, legal information such as ownership of the land and even an economic valuation of the approximate value of the properties.

Thanks to photogrammetry it is now possible to create digitized models and records that provide exact information on the physical characteristics of properties and for this initial record to be used to add more data to said model.

Thanks to our drone fleet, aerial photogrammetry has experienced a considerable improvement in efficiency and what previously could only be done with a small plane or helicopter is now within our reach. Graphic information capture technology, video cameras and other devices are all technological elements that have been improving over time and that today allow us to generate reliable cadastral information.

The Importance of good urban management

As is known, cadastral information is basic for carrying out adequate territorial management and urban planning; In this sense, having this information and using it translates into:

  • Better urban administration.
  • Greater resources and information for future city planning.
  • Greater knowledge of the needs met and not met at the infrastructure level.
  • Projection of number of inhabitants and demographic characteristics.
  • Better management and allocation of public spaces for services: educational, health, etc.
  • Transportation improvement and planning.

It is clear that cadastral management is essential to create a sustainable city, with services equitably provided and functional in terms of transportation. Do not hesitate to request information about our drone photogrammetry service in order to improve the cadastral registry; we are at your service.

Contact Acero Estudio, specialists in photogrammetry with drones and consulting services for architecture and engineering in Spain and Peru.

Advanced Uses of the 3D Laser Scanner for Construction

3D Laser Scanner technology is another important advance that is used in architecture, construction and even surveying. This important tool allows us to generate a 3D representation in the form of a point cloud with great realism, sharpness and detail.

Below we will learn about some uses of the 3D laser scanner.

Construction documentation: The 3D laser scanner allows us to achieve a detailed capture of the current conditions of a structure, whether it is a building, monument, infrastructure, etc. This is crucial for renovation and restoration projects where detailed knowledge of the environment and the structure to be worked on is required.

Quality control: The laser scanner is also used to monitor the progress of a construction or engineering work with the purpose that the execution conforms to the plans and projections, avoiding errors that may imply risks for the project or delays in it.

Building Information Modeling (BIM): Through tools such as Scan-to-BIM, the 3D laser scanner, allows us to create BIM models of existing buildings in less time. Having BIM models is especially useful for proper construction management, not only in the execution phase but also in the maintenance phase.

Topographic surveys: Although topography is a service that usually uses other tools, the 3D laser scanner provides us with fast, efficient and precise tools to carry out topographic surveys with a high level of detail.

Documentation of structural elements: In complex or historical structures where the documentation is incomplete or non-existent, the 3D laser scanner allows us to generate the appropriate documentation of the building.

Structural Damage Analysis: Provides valuable data for structural evaluation and planning of repairs or reinforcements.

Planning of facilities and services: In remodeling projects, the 3D laser scanner helps us in planning new facilities and services, ensuring that they are properly integrated into the existing space.

Integration with augmented reality: Data captured with the point cloud can be used to create augmented reality experiences that help visualize finished projects.

Traffic flow simulations: Knowledge of an area helps us analyze and simulate the flow of traffic, people and equipment in a space, optimizing the design and operational efficiency of structures.

Preservation of historical heritage: The 3D laser scanner allows us to document historical buildings and preserve these detailed models to be used in faithful restorations and heritage maintenance.

As you can see, the 3D laser scanner has the ability to capture detailed real-world data and convert it into digital models. This technology not only improves efficiency and precision in various construction processes, but opens new possibilities for innovation in design and project management. Contact Acero Estudio and learn more about our 3D laser scanning service.

Is it possible to carry out surveying with drones?

is it possible to carry out surveying with drones

In recent years, drone surveying has gained prominence among surveying services due to its efficiency and accuracy. Various prestigious brands offer drones, equipped with specialized sensors and mapping technology, these tools facilitate the collection of detailed topographic data as well as data that can later be compared with already prepared plans or used to carry out other types of studies. This approach has proven valuable in topographic surveying, providing crucial information on elevations, slopes, and geographic features.

In addition to topographic surveying, drones are capable of generating three-dimensional models of the terrain. This 3D modeling capability not only makes it easier to visualize topography, but also improves analysis and understanding of the geographic environment.

Another notable application is surface change control. By carrying out periodic flights, drones make it possible to monitor alterations in the terrain over time, such as erosion, construction or any relevant modification.

In the field of project planning and design, topographic data obtained from drones is essential. Detailed information streamlines the decision-making process and contributes to efficiency in construction, engineering and agricultural projects.

Additionally, precision agriculture benefits greatly from drone surveying. These devices can perform elevation maps and analyze crop health, providing valuable data to optimize agricultural practices.

The most commonly used sensors in surveying drones include RGB cameras, multispectral cameras, LIDAR (Light Detection and Ranging) and ultrasound sensors.

Drone surveying offers significant advantages, such as reduced time and costs compared to traditional surveying methods. Additionally, the ability to obtain real-time data and flexibility in flight planning make this technology increasingly popular in various fields.

Contact us and request more information about our drone topography and aerial photogrammetry services, we are at your service.

Topography in the Wind Generation Industry

topografia para centrales de generacion-electrica

The growing concern for clean electricity generation sources means that wind energy generation continues to experience significant growth. For these reasons, the construction and installation of wind energy projects are works of great importance both for the investments they represent as well as for the benefits they bring to the cities they supply.

Obviously when it comes to wind, wind power plants must be installed in places where there is a deep understanding of the terrain. In this context, topography, together with advanced technologies such as aerial photogrammetry, BIM and 3D laser scanning, play a fundamental role in optimizing the installation of wind farms.

Efficient Design Depends on Accurate Data

Topography provides us with detailed information about the shape of the land, elevations, slopes and geological characteristics. Integrating this information with techniques such as photogrammetry allows for the creation of accurate three-dimensional models of the site, facilitating the design of efficient wind farms. The combination of topographic data and 3D models ensures a complete understanding of the environment, resulting in an optimized design of the turbine layout and its height to maximize wind capture.

Identification of Obstacles and Risks

3D laser scanning has become an essential tool for identifying potential obstacles in the terrain, such as buildings, vegetation and geological structures. This level of detail not only helps avoid problems during the construction phase, but also minimizes operational risks throughout the life of the wind farm. Anticipating and mitigating potential challenges contributes to the long-term safety and profitability of the project.

Project Planning and Management

The implementation of BIM in wind energy projects allows for comprehensive and efficient information management. From the design phase to construction and operation, BIM facilitates collaboration between different disciplines, improving coordination and reducing errors. Topography, when integrated into BIM models, offers a holistic vision of the project, improving decision making and optimizing resources.

Likewise, with the integration of 3D laser scanning and BIM (ask about our BIM consulting service) we can integrate simulations into the generated model that help us anticipate potential risks that affect the performance of the wind farm, such as the construction of surrounding buildings, etc.

In summary Acero Estudio‘s specialized focus on geography, architecture and construction analysis technologies allows your company to benefit from the integration of advanced technologies that will reduce risks, improve the economics of the project and guarantee its sustainability.

Drones in Infrastructure: State of the Art and Future Perspectives

dron sobrevolando un puente y realizando vigilancia aérea

While it is true that we often see drones as fun tools, in the last decade their use has amplified our capabilities in various areas. As drone specialists, at Acero Estudio we want to show how this important tool plays a vital role in infrastructure inspection today.

Aerial Photogrammetry: Capturing precise details from above

One of the most significant drone-driven advancements in infrastructure inspection is drone photogrammetry. This technique uses high-resolution cameras mounted on drones to capture detailed images from different angles, allowing the creation of accurate three-dimensional models of existing structures and facilitating the planning of new construction.

Large construction companies use aerial photogrammetry to evaluate the condition of bridges, roads and buildings, identifying possible structural problems early. Additionally, the ability to generate detailed models facilitates informed decision making during the design phase and reduces costs associated with manual inspections.

Monitoring and Surveillance of Works: Guaranteeing Safety and Efficiency

Drones equipped with thermal cameras and advanced sensors can closely monitor construction progress, identify potential safety risks, and provide real-time data to management teams.

Developed countries, such as the United States and China, have integrated drone systems to monitor large-scale construction projects, such as highway expansion and the construction of new facilities. This constant surveillance not only improves workplace safety, but also contributes to overall project efficiency by identifying and addressing issues in a timely manner. In the past, if you wanted to observe a work from the air, it was necessary to hire the service of a helicopter or light plane, but today, thanks to drones, this possibility is within our reach.

Infrastructure and its Impact on the Lives of Populations

Infrastructure plays a fundamental role in the quality of life of populations. From roads and bridges that facilitate transportation to water and energy supply facilities that sustain communities, these structures directly impact the well-being of society.

Large construction companies are using drones to inspect and maintain their critical infrastructure. For example, regular drone inspection of bridges not only ensures their structural integrity, but minimizes closure times and reduces traffic disruptions.

Future Perspectives: Automation and Collaboration with AI

As technology advances, the future prospects for drone infrastructure inspection become even more exciting. The integration of artificial intelligence (AI) will allow drones to analyze data autonomously, identifying patterns and anomalies without human intervention.

Fully automating infrastructure inspection using drones will not only improve efficiency, but also reduce the costs and risks associated with manual work in potentially hazardous environments. This points the way toward a more proactive and predictive approach to critical infrastructure maintenance.

As we move into the future, the collaboration between drone technology and artificial intelligence promises an exciting horizon for global infrastructure development and maintenance.

How 3D Laser Scanning Revolutionized Architecture Projects

modelo de edificio historico generado por el láser escaner 3d

The continuous advancement of technology has radically transformed the way in which architectural projects are planned and carried out. One of the most important technological advances in recent times is without a doubt the 3D laser scanner.

This important tool improves efficiency in digital modeling efforts but also redefines precision in the design and construction of structures in critical areas that previously required intensive use of personnel.

Use of the 3D Scanner in the Renovation of Historical Heritage

3D laser scanning plays an important role in the renovation of historic buildings, where preservation of the original architecture is essential. The use of this important tool allows the machine to capture details not visible to the naked eye, helping to generate an exact model of the architectural elements.

Urban planification

The demographics of cities and their growth mean that urban planning faces new, increasingly complex challenges. In these cases, precision and space optimization are essential. 3D laser scanning together with other techniques such as photogrammetry with drones and techniques such as Scan to BIM (learn about our BIM Consulting service) has proven to be very useful.

The ability to capture three-dimensional information in real time speeds up decision-making and contributes to a more efficient and functional urban design.

Building Construction

In the construction sector where labor is intensive, companies seek to improve efficiency without affecting labor aspects; That is why the use of techniques such as the 3D laser scanner together with the BIM methodology are mandatory to achieve efficiency and speed.

3D laser scanning not only allows a quick, objective and detailed inspection of the works but, combined with various software, offers the early detection of possible structural problems, guaranteeing exceptional safety standards.

escaneo laser 3d de gran calidad
In addition to the indicated benefits, our equipment allows you to achieve high-quality scanning for your projects.

Interior design

For interior design projects, the 3D laser scanner paves the way for unrestricted creativity. This feature allows designers to accurately visualize their ideas with better aesthetic and practical functional results.

Now that you know more clearly the advantages and benefits of the 3D laser scanner, do not hesitate to contact us, our sales team will provide you with the best information to achieve spectacular results in your project. We are at your service.

Construction Monitoring: The importance of continuous topography

importancia de la topografia continua
  • Introduction
  • Continuous Surveying Case in Action
  • Benefits of Continuous Surveying in Permanent Constructions
  • Types of Construction that Require Continuous Topographic Monitoring
  • Conclusions: The Crucial Need for Continuous Surveying in Construction Sites

1. Introduction

Construction monitoring is an essential facet in the construction and development of projects and continuous surveying is a tool that often makes the difference between the success and failure of a construction or engineering project. This article will explore the importance of having surveying services on an ongoing basis throughout the entire project, examining its benefits and highlighting the types of construction that crucially require this service.

2. Practical Case of Continuous Surveying in Action

There are cases in which a large-scale construction project requires great topographical efforts continuously throughout the construction process; This process is called continuous surveying. If initial surveying provides the foundation, continuous surveying ensures that the infrastructure will remain stable and safe throughout the construction process.

Thanks to the advancement and technology of our work, we can provide sensors that will accurately constantly monitor soil deformations, guaranteeing structural integrity and providing adequate data to take corrective actions before a structural collapse occurs.

3. Benefits of Continuous Surveying

Continuous surveying goes beyond simple initial measurement. It provides constant monitoring of the work, detecting any unexpected changes, which provides higher levels of security and optimizes resources by preventing problems before they worsen.

4. Types of Construction that Require Continuous Topographic Monitoring

Not all constructions demand the same level of topographic monitoring. Those of a permanent nature, such as bridges, skyscrapers, tunnels, dams and critical infrastructure projects, benefit significantly from continuous topography. The long-term stability of these structures requires constant attention to ground conditions and possible changes. Topographical surveying is no longer enough.

5. The Crucial Need for Continuous Surveying in Construction Sites

Continuous topographic monitoring stands as a fundamental pillar in risk management and effective planning, ensuring that each construction is a lasting testament to human skill. Ultimately, continuous surveying is not only a safety measure, but a wise investment for the present and future of engineering and construction.